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Stochastic energetics of quantum transport
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We examine the stochastic energetics of directed quantum transport due to rectification of nonequilibrium
thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of
an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as
well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and
efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on
the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conven-
tional efficiency being independent of the nature of the bath and the potential remains the same for classical

and quantum systems.
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I. INTRODUCTION

Forced thermal ratchet has been the paradigm for rectifi-
cation of nonequilibrium fluctuations [1-4] for usable work.
In the simplest possible terms it represents a Brownian par-
ticle in a periodic potential under overdamped condition
which exhibits a net drift provided the system is subjected to
an external force with zero mean and with sufficient correla-
tion so that the detailed balance is lost and the symmetry of
the device is broken. Over the years considerable attention
has been devoted to this area to understand functioning of
molecular motors active in muscle contraction [5-8], useful
separation of particle [9] theoretical issues involving second
law [10-13] and many other aspects [14,15]. Since a ratchet
device is a typical machine which works at a mesoscopic
level in converting heat drawn from nonequilibrium fluctua-
tions into work, attempts have been made to quantify the
efficiency of such a machine. For example, Sekimoto [13]
has proposed a method for studying several variants of ther-
mal ratchet model analyzed also by others [16]. Magnasco
[4] has considered a Sziland’s heat engine and suggested an
expression for net power consumed by such an engine. The
work of Julicher et al. [3] had provided the estimate of total
energy consumption. An interesting generalization of defini-
tion of efficiency had been proposed by Derényi er al. [41]
for motors without load.

We address in this paper the problem of stochastic ener-
getics of a forced thermal ratchet in a quantum mechanical
context. A Brownian particle being a microscopic object, the
quantum effect is likely to be significant in appropriate situ-
ation, e.g., in the transport of quantum particles in quantum
wires, superionic [17-19] conductors and in other nanode-
vices [20], particularly at low temperature and other impor-
tant issues [21-23]. To this end a number of attempts on
quantum ratchet device have been made. Reimann er al. [24]
investigated adiabatically rocked ratchet system to show that
quantum corrections enhance classical transport at low tem-
perature. Two models of quantum ratchet have also been pro-
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posed by Yukawa et al. [25]. Based on the perturbative ap-
proach Scheidl and Vinokur [26] have investigated quantum
Brownian motor in ratchet potentials to identify the charac-
teristic scales of response functions of the system. Carlo
et al. [27] have studied a typical model quantum chaotic
dissipative ratchet to analyze the directed transport from a
quantum strange attractor. Keeping in view of this develop-
ment we note that although quantum ratchet device has been
the object of interest for some time, its efficiency (i.e., quan-
tum efficiency) has largely remained unexplored. Based on
the quantum Langevin equation which implies an interplay
between several forces we analyze here the energetics of
directed transport by taking into consideration of how the
transducer which characterizes the state of system mediates
the energy among the basic components of a forced ratchet,
i.e., the external system, the load, and the heat bath. It is also
important that frictional dissipative energy in course of di-
rected motion must also be counted as a part of expenditure
of useful energy for rectification of Brownian motion. This
implies that one can also envisage a kind of Stokes efficiency
in absence of load. We take into account these considerations
in our exploration of quantum energetics in presence and
absence of load to characterize two distinct quantifiers of
efficiency in a quantum ratchet device. A relevant pertinent
point that needs attention in this context is that although
quantization, in principle, adds new elements into the theory,
it is important that quantization must not break the symmetry
of the device, i.e., it should not create a new load or tilt on
the potential or break the detailed balance. Second, forcing
must be unbiased so that after appropriate averaging over
time or ensemble, no directional component should appear as
a fictitious drift. With these considerations for thermody-
namic consistency we analyze the efficiency and current gen-
eration in a quantum ratchet in relation to total consumption
of energy and dissipation both in presence and absence of
external load.

II. A QUANTUM DYNAMICS IN A SPATIALLY PERIODIC
POTENTIAL AT EQUILIBRIUM

We consider a particle of mass m moving in a periodic
classical potential V(x). The particle is coupled to a set of
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harmonic oscillators of unit mass acting as a bath. This is
represented by the following system-reservoir Hamiltonian
[28,29]

P’ )Pl
H="—1+v®+ Ly —k(g. -2, 2.1
v (X) J:El 3 2'9(% x) (2.1)

Here £ and p are the coordinate and momentum operators
of the particle and {g;,p;} are the set of coordinate and mo-
mentum operators for the reservoir oscillators coupled lin-
early through the coupling constants ;(j=1,2,...). For the
spatially periodic potential, we have V(x)=V(x+L), where L
is the length of the period.The coordinate and momentum
operators follow the usual commutation rules {%,p}=iA and
{4, p;}=ih &;;. Eliminating the bath degrees of freedom in the
usual way we obtain the operator Langevin equation for the
particle
. 4 .

mx + f dt' y(t—1)x({") + V' (X) = I'@). (2.2)
0

(Overdots refers to differentiation with respect to time ?)

where noise operator f(t) and the memory kernel are given
by

(1) = X [{G;(0) - £(0)}x; cos wjt + x}*p,(0)sin wjt]
J

(2.3)

and

wt) = > K; COS wit, (2.4)
J
respectively, with szwjz»

Following Ref. [30] we then carry out a quantum me-
chanical average (- - ) over the product separable bath modes
with coherent states and the system mode with an arbitrary
state at =0 in Eq. (2.2) to obtain a generalized quantum
Langevin equation [31,32,30] as

mi + f dr' y(t—1")i(t") + V' (x) = T(2) + Q(x,(5%"))
0

(2.5)

where the quantum mechanical mean value of the position
operator (X)=x and

O(x,(a") = V'(x) = (V'(2)),

which by expressing £(r)=x(¢)+ 8%(¢) in V(%) and using a
Taylor series expansion around x may be rewritten as

(2.6)

Q0 (58 = 3 (68",

|
n=2 N

(2.7)

The above expansion implies that the nonzero anharmonic
terms beyond n=2 contain quantum dispersions (dx"). Al-
though we develop this section in general terms, we are spe-
cifically concerned here typically with periodic nonlinear po-
tentials of the type sin 2mx/L or cos 2mx/L or their linear
combinations and the like which have been used earlier in
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several contexts. The nonlinearity of the potential is an im-
portant source of quantum correction in addition to the quan-
tum noise of the heat bath. The calculation of Q rests on the
quantum correction terms (8%") which one determines by
solving a set of quantum correction equations as given in the
next section. Furthermore the ¢ number Langevin [31,32,30]
force is given by

[(1) = 2 [(3(0)) = (#(0))k; cos jt + 1} 5 (0)sin ]
J

(2.8)

which must satisfy noise characteristics of the bath at equi-
librium

(C(1))s=0, (2.9)

1 ho;
TO("))g= EE Kjﬁwj(coth i)]{)cos w(t-t").
j

(2.10)

Equation (2.10) expresses the quantum fluctuation-
dissipation relation. The above conditions (2.9) and (2.10)
can be fulfilled provided the initial shifted coordinates
{(4;(0))~(x(0))} and momenta (5;(0)) of the bath oscillators
are distributed according to the canonical thermal Wigner
distribution [33,34] of the form

P{[{§;(0)) = (£(0)].¢5,(0))}

1 1
E<ﬁj(0)>2 + EKj[<éj(0)> - (*O)P

: ,
ho;| n(w;) + 5

(2.11)

=Nexp

so that the statistical averages (---), over the quantum me-
chanical mean value O of the bath variables are defined as

<0j>s = f Oijd<ﬁ_j(0)>d{<('?j(0)> - <)?(0)>} (2.12)

Here n(w) is given by Bose-Einstein distributions
(enkT_1)~1, P; is the exact solution of Wigner equation for
harmonic oscillator [33,34] and forms the basis for descrip-
tion of the quantum noise characteristics of the bath kept in
thermal equilibrium at temperature 7. In the continuum limit
the fluctuation-dissipation relation (2.10) can be written as

©

IrOre)) = %J dok(w)p(w)ho coth(%)cos w(t-1"),

0
(2.13)

where we have introduced the density of the modes p(w).
Since we are interested in the Markovian limit in the present
context, we assume «(w)p(w)=(2/m)y, Eq. (2.13) then
yields
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(F@ra))=2D,0(t-1t") (2.14)

with

1 ﬁ(,!)()
D,= E'yﬁwo coth KT (2.15)
[The passage from Eq. (2.13) to Eq. (2.14) is given in the
Appendix A.]
wy refers to static frequency limit. Furthermore from Eq.
(2.4) in the continuum limit we have

Wt—t")=vyS(t-1"). (2.16)

v is the dissipation constant in the Markovian limit. In this
limit Eq. (2.5) therefore reduces to

mi+ yx+ V' (x) =) + Q(x,{6M)). (2.17)

It is useful to work with dimensionless variables for the
present problem to keep track of the relations between the
scales of energy, length, and time. The period L of the peri-
odic potential V(x) determines in a natural way the charac-
teristic length scale of the system. Therefore the position of
the Brownian particle is scaled as

Xx=x/L.

Next we consider the time scales of the system. In ab-
sence of the potential and the noise term the velocity of the
particle x(r) ~ exp(—t/ ;) with 7, =m/y, which represents the
correlation time scale of the velocity the Brownian particle.
To identify the next characteristic time 7, we consider the
deterministic overdamped motion due to the potential as
Wdx/dt)=—dV(x)/dx. Then 7, is determined from y(L/7,)
=—AV/L as 1y=7yL?>/AV where AV is the barrier height of
the original potential. Hence time is scaled as 7=t/ 7. Fur-
thermore the potential, the noise, and the quantum correction
terms are rescaled as V(¥)=V(x)/AV, T(®)=T(:)/(AV/L),
and Q/(AV/L), respectively.

Hence dimensionless quantum Langevin equation reads as

wx+x=fx+IL@.

Here the overdot( ) refers to differentiation with respect to
scaled time ¢. Dimensionless mass ' =m/y1y=1,/ 7, and

F®) =- V' (@) + O(x,(&8).

The noise properties of the quantum bath are then rewrit-
ten as

(2.18)

(2.19)

(L@),=0,
(P T(0),=2D, 87T,
where
l ﬁ(l)o
~hwycoth —
b= 2 2kT
“ AV '

From now onwards we drop the overbars from all parameters
and variables for simplicity. It may be shown [31,39] that
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quantum stochastic dynamics Eq. (2.18) does not generate
drift motion to a preferential direction. Since the quantum
correction Q(x,(8%")), as expected, cannot break the detailed
balance in the quantum system, nor the symmetry of the
potential. This conclusion is an important check of the
present formalism for a correct description of the equilibrium
and thermodynamic consistency.

III. QUANTUM TRANSPORT INDUCED BY ZERO MEAN
EXTERNAL FLUCTUATION

A. General features

Since equilibrium thermal fluctuations due to heat bath
cannot break detailed balance in the quantum stochastic dy-
namics, we introduce an external derive with zero mean and
with sufficient correlation to generate drift motion on aver-
age in one direction. To analyze the energetics of directed
quantum transport, we now introduce an external load to
work against the global motion of the forced thermal ratchet
system. From Eq. (2.18) it follows that the dynamics of the
particle under overdamped condition is described by the
scaled equation (we have dropped the overbar)

x:f(x)+F(t)+A(t)—a—V/. (3.1)
ox

The quantum mechanical mean of the position operator, x
represents the state of the energy transducer, that is the state
of the ratchet. I'(z) is the internal quantum noise of the ther-
mal bath with the properties as noted earlier. A(7) is an ex-
ternal field with temporal period 7, A(r+7)=A(f), in the
present problem. We consider A(7)=A sin wt. It is important
to note that for a movement of transducer in a preferential
direction A, must lie between two threshold values,
max, f(x) and —min, f(x) [4]. dV,/dx=I, is a load against
which transducer performs work. The quantum nature of the
problem therefore manifests itself in two ways; first, through
quantum corrections in f(x) which we consider, in principle,
to all orders and second in quantum diffusion coefficient D,
for the noise of the bath.

The Fokker-Planck equation corresponding to Eq. (3.1) is
given by

IP(x,1) aJ(x,1)
o o

, (3.2)

where

J(x,1)=— Dq%?t) +[f(x) +A() = []P(x,0).  (3.3)

If forcing frequency is very low, there is enough time for the
system to reach the steady state during the period 7 and the
above equation can be solved analytically for J as a function
of A, using period boundary and normalization conditions

c+1
P(x+1)=P(x), f P(x)dx=1. (3.4)

We then obtain
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exp[(1)] - exp[4(0)]

J(A) =

0

where

1
N= Lf expl (x)ldx, (3.6)
D,J,

X

1
f expl Yx)Jdx f dy exp[ 4]
0 0
C,= 1 , (3.7)

J exp[ ¥(x) Jdx

0

_ ) +A-1 _ L) +A=1
Mx)-JC—Dq dy, ¢<1>-£—Dq .

(3.8)

The average current over a forcing period is given by

Jo = lJTJ(A(z))dt. (3.9)
TJo

Average square wave current of amplitude A, is given by
Jogr= 3[J(AQ) + (= Ag)]. (3.10)

We now proceed to analyze the current under nonequilib-
rium condition and the related quantum effects. One of the
prime quantities for this analysis is the potential V(x) or the
corresponding force term f(x) given by

f)==[V'(x) - Q(x,(3"))]

v+ S Lvaan | G
ox n!

n=2 "t

The quantum correction terms can be determined as fol-
lows. We return to the operator Eq. (2.2) and put £(z)=x(r)
+0%(r) and p(r)=p(r)+p(t) where x(r)=(x(r)) and p(z)
=(p(r)) are the quantum mechanical mean values of the op-
erators X and p, respectively. By construction [ 8%, 5p|=ih
and (5%)=(8p)=0. We then obtain the quantum correction
equation

t
mox + f dr' Yf(t—1")8%(t") + V'(x) &%
0

3 V() (88— (30) = 1) - T,

n=2 "
(3.12)

Again in the overdamped limit we discard the inertial

term m&%. We then perform a quantum mechanical average

1
N{{eXp[w(l)]}{f expl YAx) Jdx - Cz} +Cy eXp[w(O)]}

(3.5)

with initial product separable coherent states of the oscilla-
tors of the bath only to get rid of the internal noise term and
to obtain the reduced operator equation for the system as

. 1
YO+ V(1) 88+ 2 — V™ (x)(58" - (58)) = 0.
n

n=2 """
(3.13)

With the help of (3.13) we then obtain the equations for
(68"(1))

1(5)22) = l[— 2V (x)( 852 — V"(x)(8%%)],  (3.14)
dt 0%

d%(é)ﬂ = i =3V (x)(6%) - %V’”(x)(&f“) + %V”’(x)<§)22>2 )

(3.15)

and so on. Taking into account of the leading order contri-

bution (8%%) explicitly we may write [it is easy to observe

that each successive order of quantum correction decreases

by a factor of O(1/7) which implies that a leading order

contribution is sufficient in the overdamped limit]
2

d(6%) = - ;V”(x)( S8%)dt. (3.16)

The overdamped deterministic motion gives ydx
=-V'(x)dt which when used in (3.16) yields after integration

(88 =A [V (D), (3.17)

where Aq=<5)22>x6/ [V(x.)]* and x. is a quantum mechanical
mean position at which (&%) become minimum, i.e.,
(88%), =%/ wy, w, being defined in Eq. (2.15).

In i)resent problem we consider an asymmetric potential
of period 27

V(x) =—sin x — 0.25 sin 2x. (3.18)

The reference point x. can be determined by setting
d(5%*)/dx=0 and quantum correction up to the leading order
and the potential force are given by

O(x,(88") = = A [V' () TIV"()], (3.19)

and

J)=={V'(x) + A,V" [V ()]},

respectively, where A =27%/w,. We now emphasize an im-
portant point. If the potential is symmetric, then the quantum
correction in Eq. (3.20) is an odd function just as V' (x). This
implies that quantum correction to classical potential has not

(3.20)
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0.4

T

FIG. 1. A plot of quantum current vs T for different strength of
external periodic force (i) Ag=1.0 (dotted line), (ii) Ap=1.2 (solid
line), (iii) Ag=1.5 (dash-dot line), and /=0.01 (All the quantities are
dimensionless.)

destroyed the inversion symmetry of V(x). Thus the approxi-
mation in deriving the leading order quantum effect is con-
sistent with symmetry requirement of the problem. It is also
clear that if potential is periodic then the contribution due to
quantum correction to the classical potential, i.e.,
J50(x,(8¢"))dx is a periodic function of x. Assuming the
form of potential of Eq. (3.18), the expression for quantum
correction after properly scaling (as described in the Sec. II)
is given by

Ox,(o8")) =— Aq[cos3 27x + 0.5 cos® 4mx
+ 3 cos? 27mx cos 41mx + 2.25 cos 2mx cos’ 4arx].
(3.21)

Quantum correction of the potential is entirely due to non-
linearity. Physically the correction terms account for the
quantum fluctuation or dispersion around the classical path
of a dynamical system. In the presence of strong dissipation
these fluctuations are small since it is well-known [also fol-
lows from analysis of Egs. (3.13)—(3.17)] that dissipation
enhances classicality [35]. The role of effective potential of
the similar nature which gives rise to leading order quantum
correction to classical Langevin force had also been noted
earlier, e.g., in the analysis of strong friction limit of quan-
tum stochastic processes, etc. [36-38]. Since the corrections
are perturbative in nature they may differ in form but be-
cause of nonlinearity of the potential they bear close kinship
to each other. We emphasize that the approximate forms of
quantum correction must satisfy the basic symmetry require-
ment, appropriate equilibrium distribution, and other thermo-
dynamic consistency condition as pointed out earlier [31,39].
In Fig. 1 we illustrate the variation of current as a function of
temperature (7) for different values of the amplitude of ex-
ternal derive (A,). One observes that with increase of D,
(proportional to temperature) the magnitude of current in-
creases to a maximum followed by decrease and a current
reversal at high temperature. At higher temperature the sys-
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FIG. 2. A current J,,, vs temperature (T) plot comparing classi-

qr
cal (dashed line and solid line) and quantum (dotted line and dashed

dot line) limit for different strength of external periodic force (i)
Ag=1.3 (dotted line and dashed line), (i) Ap=1.0 (dashed dot line
and solid line), and /=0.0. (All the quantities are dimensionless.)

tem is thermalized as a result of which organized motion in a
preferential direction decreases and the motion towards the
load dominates. For fixed D, with increase of the value of A,
the magnitude of the current increases. The effect of quanti-
zation of a classical ratchet is shown in Fig. 2, where we
present a comparison of the current vs temperature profile for
the classical and the quantum cases. One observes that at the
low temperature region the classical current is significantly
lower in magnitude than quantum current and at the higher
temperature the effect of quantization becomes insignificant.
This may be interpreted in terms of an interplay between
quantum diffusion coefficient D, and the potential force term
f(x). f(x) contains quantum correction arising due to nonlin-
earity of the potential. As temperature T— 0, D, approaches
to the value %hwo, the vacuum limit in deep tunneling re-
gion. The anharmonic terms in f(x) do not contribute signifi-
cantly. So the integrand in effective potential #{(x) increases
sharply. On the other hand, as temperature increases, D, in-
creases and also D, and f(x) compete with each other to
merge quantum current to its classical counterpart.

B. Energetics of nonequilibrium fluctuation induced quantum
transport

Efficiency of the ratchet device is an important physical
quantity that quantifies the energetics of nonequilibrium fluc-
tuations in the transport processes. Depending on the degree
and presence of an external load two distinct approaches
have been advocated. It has been shown that although in
many widely accepted cases efficiency is measured by apply-
ing the constant external force, there are situations, where
molecular motors are designed not to pull loads (e.g., protein
transport within a cell). In such cases a minimum energy
input is required to move a particle in a viscous medium. We
therefore discuss the two different situations separately.
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1. Conventional efficiency in presence of an external load

To discuss the energetics of quantum transport induced by
zero mean external derive we consider the energy transducer
which interacts with the external derive and the load so that
the potential takes the following form

Ux,t) = V(x) — f dxQ(x,(68")) +A(H)x + Ix, (3.22)

where V(x) is the classical potential, the second term repre-
sents the quantum corrections due to nonlinearity of the clas-
sical potential, and last two terms are due to external system
and the load, respectively. The interaction of transducer with
heat bath is assumed to be stochastic, as usual. Thus for the
movement of transducer from x;(#;) — x4(¢,) the total potential
energy change (AU) and dissipation energy (E,), during the
period 1;<t <1, are formally given by [13]

AU = Ulx(ty),t,] = Ulx(t),1,], (3.23)

and

E,= f [= % + () ]dx() = f [‘?U(x t)]dx(t),

(3.24)

respectively.

Because of the conservation law, the sum of the potential
energy change and dissipation energy must be equal to the
total consumption of energy E. (AU+E,=E,), due to the
external system A(7)

't oU(x,t
b [, @29
t

ot

In the present case the external system is a periodic function
of time, so that the ensemble average of total consumption
energy (E,) and dissipation energy (E,) is given by

(E.)= f ! dt f MP(x,t)abc(t)
t space ot

= ftf dtf AW)J[A(1)]dx (1), (3.26)
t; space

and

(E)= f tfd;f d[ oux, t)}J[A(t)] (3.27)
1 space

respectively. For the square wave with the amplitude A,

((ED) g = 3AdI(Ag) = J(= Ag)], (3.28)

(Egqr = S[AG{I(Ag) = J(= Ag)} — HI(Ag) + J(= Ag)}].

(3.29)
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0.000 +

FIG. 3. A plot of quantum efficiency vs T for different strength
of external periodic force (i) Ag=1.0 (dotted line), (ii) Ag=1.5 (solid
line), (iii) Ap=2.0 (dashed line), and /=0.01. (All the quantities are
dimensionless.)

Hence the work, that the ratchet system extracts from the
external system A(?) is given by

SII(A) +J(=Ag)] =1 X J .
(3.30)

<qur> = <(Ec)sqr> - <(Ed)sqr> =

So the work extracted from the external system is directly
proportional to square wave current. The conventional effi-
ciency of the ratchet system is thus calculated on the basis of
external load and can be written as

_ Megr _ 1[J(Ap) +J(=A)]
E.  AlJ(Ag) -J(-A9]

(3.31)

We now numerically illustrate the behavior of efficiency of
the quantum ratchet system as given above. The effect of
quantization of the reservoir is apparent in Fig. 3 in the
variation of efficiency (7) as a function of temperature for
different values of amplitude (A,) of the external periodic
system. The efficiency is a decreasing function of tempera-
ture for any value of Ay and it decreases with increase of A
for a fixed value of temperature. The distinctive behavior of
efficiency of a quantum system is evident from the nature of
quantum current that can attain a maximum value for a finite
temperature. On the other hand the maximum efficiency is
realized at the zero strength of thermal fluctuation. It is thus
apparent that the equilibrium fluctuation due to thermal heat
bath is a hindrance for efficient extraction of useful work
from nonequilibrium fluctuations. To have a closer look at
the behavior of efficiency we present in Fig. 4 the dissipation
energy and total consumption energy as a function of tem-
perature. At very low temperature the energy loss due to
dissipation (E,) during the movement of energy transducer is
small compared to the total energy consumed from the ex-
ternal system, because for a finite net displacement x;— x/ it
covers minimum path at low thermal fluctuation. On the
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0.14

o e —
0.0 0.1 0.2 0.3 0.4 0.5

T

FIG. 4. A comparison between dissipation energy E; (dotted
line) and total energy consumption E, (solid line) as a function of
temperature for the parameter set [=0.05 and Ay=1.0. (All the
quantities are dimensionless.)

other hand at high temperature the path of energy transducer
is more chaotic. So for a finite net displacement it covers
maximum path and loses a greater amount of energy due to
dissipation. With increase of the temperature dissipation en-
ergy and total energy consumption from external system both
are increased and the difference between two energies (E,
and E,) become insignificant at higher temperature.

The condition for maximum conventional efficiency can
be realized by rearranging Eq. (3.31) as a function of
J(=Ap)1J(A)

J(=Ap)
l J(Ap)
n=—| 1- (3.32)
Ag J(=Ap)
1+
J(Ap)

In the limit |J(=A)/J(Ay)|— 0, the maximum efficiency of
the energy transform for a given load and force amplitude is
given by (the limit can be achieved by suitable adjustment of
parameters)

(3.33)

l
Tmax = A() .
Now we have two important conclusions regarding the maxi-
mum efficiency of a ratchet system, (i) it is a simple ratio of
load to a parameter of external system (strength of external
system) and it is independent of the characteristics of the
bath. (ii) 7,,, being independent of the nature of the bath
and the system potential, is the same both in quantum and
classical systems.

In Fig. 5 we compare the conventional efficiency vs tem-
perature profile for the classical and the quantum cases for
different values of A,. We observe that the efficiency of
quantum ratchet is significantly lower than the classical one
and the difference becomes insignificant at higher tempera-
ture. Since the vacuum fluctuations tend to be effective in the
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0.004 1

0.002 1

0.000 1

FIG. 5. Conventional efficiency (7) vs temperature (7) plot
comparing classical (dotted line and solid line) and quantum
(dashed line and dashed dot line) limit for different strength of
external periodic force (i) Ag=1.3 (dotted line and dashed line), (ii)
Ap=1.0 (solid line and dashed dot line), and /=0.0. (All the quan-
tities are dimensionless.)

quantum system as one approaches the zero temperature
limit, the transducer loses a higher amount of dissipation
energy than the classical one.

2. Efficiency in absence of an external load and generalized
efficiency

We now consider the situation where the motor works
without any external load. The task is not only to translocate
the motor over a distance L, but also to do this with a given
average velocity; it must work against the viscous force v).
Now replacing the load by {v) we can define an efficiency
(Stokes efficiency)

ROk
Ns= E.

(3.34)

By combining the contribution due to (3.31) and (3.34), it is
possible to define further a generalized efficiency for the
quantum system

2
W sgr+ ¥0) .
E

c

6= (3.39)

The above expression is the quantum generalization of the
classical generalized efficiency as given earlier by Suzuki
and Munakata [40] and Derényi et al. [41]. This accounts for
both the work that the motor performs against the external
load / as well as the work that is necessary to move the
particle over a given distance in a viscous environment at the
average velocity (v).

In Fig. 6 we present the variation of Stokes efficiency 7y
as a function of temperature. It is important to observe that
efficiency reaches a maximum at a particular temperature
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FIG. 6. A comparison between classical (dashed dot line and
dashed line) and quantum (solid and dotted line) Stokes efficiency
for different strength of external periodic force (i) Ag=1.3 (solid
line and dashed dot line), (ii) Ap=1.0 (dotted line and dashed line),
and /=0.0. (All the quantities are dimensionless.)

both for classical as well as for the quantum case. However,
again at low temperature the efficiency of the classical sys-
tem drops to zero in sharp contrast to quantum case. At high
temperature the system however, tends to classical regime as
expected.

IV. CONCLUSION

In this paper we have calculated the efficiency of a forced
thermal ratchet in a quantum mechanical context. We have
shown that the quantum current is markedly higher as com-
pared to classical current at low temperature while the dif-
ference becomes insignificant at higher temperature. In con-
trast to the behavior of quantum current at low temperature,
the conventional efficiency of a classical ratchet in presence
of a load is higher at low temperature as compared to its
quantum counterpart and again the efficiency in the two
cases tends to merge at higher temperature. Furthermore the
maximum efficiency is independent of the nature of the sys-
tem potential and the bath is thus independent of quantiza-
tion. We have also examined a quantum version of Stokes
efficiency in absence of load where energy due to frictional
resistance is considered as a part of expenditure of useful
energy. A significant quantum enhancement of Stokes effi-
ciency at low temperature has been observed. The careful
consideration of the total energy consumption and dissipa-
tion reveals that the generation of higher current and Stokes
efficiency may not always imply the higher efficiency of
thermal ratchet in a conventional sense although the generic
features of the device in its classical and quantum versions
remain the same.
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APPENDIX: THE PASSAGE FROM EQ. (2.13) TO EQ.
(2.14)

We start from the basic definition [42]

t+At t+At
2Dy=— dtlJ di (T (1) (1)) (A1)
2At ;
Using Eq. (2.13) in Eq. (1) yields
1 ([~ h
2D, = E dok(w)p(w)ho COth( " wT)
t+At t+At
Xf dtlJ dtz COS (l)(tl - fz). (A2)
t t
Explicit integration over time gives
ZD—L ocd (w)p(w)h th(ﬁ )I( ,Ar),
SA; wk(w)p(w)hw co AT o)
(A3)
where
At
H(w,Ar) = —2 sin? ‘”7 (Ad)
Putting «(w)p(w)=(2/17)7y, we obtain
At
- ho |5 wT
Y
2Dq = ET_[ dohw COth( AT ) (A5)

Following Louisell [42] we have under Markovian condi-
tion, the correlation time 7,<< Az, the coarse-grain time (over
which the probability distribution function evolves).

Thus as Ar— (in scale of 7. which goes to zero) the
function sin?(wAt/2)/(w/2)?* oscillates violently so that one
takes the slowly varying quantity [7w coth iw/2kT] out of
the integration over frequency with an average value
hwg coth Awy/2kT, w, be an average static frequency. Since
the integral [%(sin? xAt/x*)dx=mAt it follows immediately
from Eq. (5)

(A6)

fiw
2D, = th
Vi co <2kT)

as given in Eq. (2.15).
Again starting from Eq. (2.13), we use the same argument
as before to have

L[ i
(C(t)L(12))s = Ef dox(w)p(w)ho coth(ﬁ)
0

Xcos w(t; —t,),
and we use
J dw cos wt=787)
0

to obtain
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o

T)(1)) = %f dw[%y}ﬁw coth(%)cos w(t, - 1)

0
h
=mcoth<&)776(tl—t2)
T 2kT
fLO)O
= h{ =2 ) 8(r, — 1,).
Yhay cot (2kT> (1) — 1)
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Therefore from Egs. (6) and (7) we have

(L) (1)) =2D8(t, — ).

Thus the derivation within Markovian approximation
clearly depends on the time scale separation. The results are
valid even at absolute zero as emphasized by Louisell.
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